Using graph-based consensus clustering for combining K-means clustering of heterogeneous chemical structures
نویسندگان
چکیده
منابع مشابه
Using graph-based consensus clustering for combining K-means clustering of heterogeneous chemical structures
Consensus clustering methods are motivated by the success of combining multiple classifiers in many areas. In this paper, graph-based consensus clustering is used to improve the quality of chemical compound clustering by enhancing the robustness, novelty, consistency and stability of individual clusterings. For this purpose, HyperGraph Partitioning Algorithm (HGPA) [1], was applied. The cluster...
متن کاملGraph based k-means clustering
An original approach to cluster multi-component data sets is proposed that includes an estimation of the number of clusters. Using Prim’s algorithm to construct a minimal spanning tree (MST) we show that, under the assumption that the vertices are approximately distributed according to a spatial homogeneous Poisson process, the number of clusters can be accurately estimated by thresholding the ...
متن کاملCombining multiple classifications of chemical structures using consensus clustering.
Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This Letter reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests tha...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملClustering Files of Chemical Structures Using the Fuzzy k-Means Clustering Method
This paper evaluates the use of the fuzzy k-means clustering method for the clustering of files of 2D chemical structures. Simulated property prediction experiments with the Starlist file of logP values demonstrate that use of the fuzzy k-means method can, in some cases, yield results that are superior to those obtained with the conventional k-means method and with Ward's clustering method. Clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cheminformatics
سال: 2013
ISSN: 1758-2946
DOI: 10.1186/1758-2946-5-s1-p50